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Abstract

We consider an orthonormal basis for L,(R) consisting of functions that are well localized
in the spatial domain and have compact support in the frequency domain. The construction is
based on smooth local cosine bases and is inspired by Meyer and Coifman’s brushlets, which
are local exponentials in the frequency domain. For brushlet bases associated with an
exponential-type partition of the frequency axis, we show that the system constitutes an
unconditional basis for L,(R), 1<p< o, B;(L,(R)), 1 <p,q< 0, s>0, and that the norm in
these spaces can be expressed by the expansion coefficients. In L,(R), we construct greedy
brushlet-type bases and derive Jackson and Bernstein inequalities. Finally, we investigate a
natural bivariate extension leading to ridgelet-type bases for Lz(Rz).
© 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

Local sine and cosine bases for L,(R) were introduced by Coifman and Meyer [3]
and has proven to be a useful tool in signal processing. A typical atom from such a
basis has the form

br(x) cos [n(n+%>x|_lxl] (1)

with 7 an interval from any fixed segmentation of the real axis, x; is the left endpoint
of I, and b; is a smooth bell function with compact support around /. The basis
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functions thus have perfect localization in time and are well localized in frequency
depending on the smoothness properties of b;.

Due to certain technical reasons the construction by Coifman and Meyer does not
work for general one-periodic systems such as the trigonometric system, i.e., the
cosine term in (1) cannot be replaced by ¢**. This deficiency was later overcome by
Wickerhauser [19]. Moreover, it was pointed out by Wickerhauser that such local
trigonometric bases have fast implementations based on the FFT.

It is clearly possible to map any such local orthonormal basis by the Fourier
transform to a new type of orthonormal basis well localized in time and with
compact support in the frequency domain. This was first noticed by Laeng [11]. This
idea was further developed by Coifman and Meyer [12]. They considered bases
constructed using the local trigonometric bases of Wickerhauser and called such
objects brushlets. Tensor products of such objects combined with the adaptive
expansion from the best basis algorithm has turned out to be quite a successful tool
for image compression [12]. This is in part due to the fact that tensor products of
brushlets have only one peak in frequency compared to say tensor products of
wavelet packets with four peaks in the frequency domain. The brushlets thus have a
better angular resolution than separable wavelet packets.

In the present paper, we consider brushlet bases from the point of view
of their approximation properties. So far, the brushlet bases have only been
considered from a very practical point of view where the L,(R) theory is quite
sufficient, but it is clear that under certain restrictions the brushlets will be well
behaved in other classical function spaces. For technical reasons, all results in the
present paper will be proved for bases of the type considered by Laeng which we will
call brushlet-type bases but it should be noted that they will hold true for the
brushlets too.

We obtain sufficient conditions on the brushlets to be unconditional bases for
L,(R), 1 <p< oo, and for the Besov spaces B;(L,(R)), 1 <p,qg< o0, s>0. The most
important condition we impose on the brushlets is that the length of the intervals in
the segmentation of the real axis essentially grows exponential as their location gets
further away from zero. Among the bases that satisfy this condition are a class of
wavelet-like bases with the twist that the “mother wavelet’ has two humps; however,
the gain is that the construction works for any expanding dilation factor even
irrational ones. This positive result should be compared to the fact that it is not
possible to obtain unconditional bases of local trigonometric functions for L,(R),
p#2, due to a classical result by Orlicz [20]. However, it is possible to characterize
certain modulation spaces using such bases (see [8]).

Jackson and Bernstein inequalities are derived for certain brushlet systems and we
prove that under certain conditions the brushlets form so-called greedy bases for
L,(R), which means that near best N-term nonlinear approximation of L,(R)
functions can be obtained by thresholding the expansion coefficients.

Finally, we consider an extension of the brushlet bases to L,(R?), with the basis
being separable in polar coordinates. Such bases resemble the Ridgelet construction
by Donoho, see [7], but with a more adaptable frequency localization.
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We should also point out that we realized that the mentioned results should be
true by reading the interesting paper [18] by Villemoes where he proves that for
“nice”” segmentations of the line the number of different bell functions needed in (1)
is finite.

2. Local cosine bases

Local trigonometric bases were introduced by Coifman and Meyer [3] and studied
in more detail in [1,9]. Local exponential bases were introduced by Wickerhauser in
[19]. Here we will just give a short summary of the results about such bases in the
special setup that we will need in the subsequent sections. The reader can consult [1]
for more information on the bases.

Given a countable set £<R (or E = ), let 2 be a countable collection of pairwise
disjoint intervals I = [0}, o) which covers R\E. Assume furthermore that each
interval in £ has one adjacent interval in £ on both sides. A brushlet is essentially
going to have support on one of the intervals in 2 in the frequency domain. Thus,
the purpose of the set E is to allow brushlets with arbitrary fine frequency
localization. We call E the set of accumulation points for 2.

To each interval I € 2 assign a cutoff radius &, >0 at the left endpoint and a cutoff
radius &} >0 at the right endpoint. Given two adjacent intervals 7, I' € 2 with o« = af,,
(I' is to the right of I), we require that &}, = ¢, called the compatibility condition. The
frequency localization of a brushlet will be on an interval of the form [o} — &}, ot +
¢7]. In order to make the brushlets orthogonal (in L,(R)) we require that only two
such intervals overlap, i.e.,

e e <. (2)
Take a non-negative ramp function pe C¢(R), d>2 such that

0 for é< —1,
p(é)Z{ oS

1 for =1

and with the property that p(é)2 + ,0(—5)2 =1 for all £eR. Assign to each interval
I = [oh, o) e 2 a bell function

= o(55)o (1) .

Notice that supp(b;) < [of — &b, oy + &4]. Thus, by and by only overlap if 7 and I’ are
adjacent intervals. Furthermore, if 1,1’ € 2 are adjacent intervals with o/, = ), then
br(&)* +bp(&)* =1 for of + & <E<o), — &

Now the set of local cosine functions

7 )
War(&) = \/;lh(é) cos(n (n—l—%)é |I|OCI)’ Ie?, neNy, (4)




28 L. Borup, M. Nielsen | Journal of Approximation Theory 123 (2003) 25-51
form an orthonormal basis for L, (R) (see [18]). We call the collection {wyur};c . nen,

a brushlet system. The brushlets also have an explicit representation. Define a set of
modified bell functions {g;},., by

o) = (S, 5

Then a direct calculation shows that
iy 1 1
Wyr(X) = \/2|I|e’°‘1"‘{g1 <I|x + n<n + E)) + g7 (|I|x - n(n + 5)) } (6)

Remark 2.1. Instead of the cosine term cos (n(n + 1)) in (4) we could have used

terms like sin (n(n +1)-), cos (zn-) or sin (nn-). The only requirement is that two
brushlets corresponding to adjacent intervals have opposite polarity (see [1]). Thus,
in particular it is possible to use different local trigonometric functions on parts of R
separated by an element in E.

s
Remark 2.2. Another possibility is to use . If we let e, (&) = [I|”"/%" 1T, then
the set of functions {v,7};c». ,en, given by

Bu1(€) =br(EV{br(E)ens (&) + br(20h — E)ens (20 — &)
- b1(20(; - f)en,l(za; - é)}7

would be the brushlets constructed in [12]. All the results contained in this paper also
hold for these functions, but for simplicity we choose to work with a construction
based on local cosines.

From (6) we see that if the modified bell function g; is well localized at zero, a

brushlet essentially consists of two peaks localized at iw. The question is when

g7 1s well localized. The following example gives a partial answer.

Example 2.1. Given an A>1, let 2, =2 be the collection of intervals [ satisfying

I
Al<|1—,|</\ (7)

for all adjacent intervals I' e 2. Let
e = (1+ M),
and notice that

ep+ep = (L+ AT (I + 1D < ],
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for I' e 2, adjacent to I, so condition (2) is satisfied. In this case, the modified bell
function g; defined in (5) is given by

) eh(1+A
(e = o1+ M (10 - ). )
1
Notice that |supp(gy)|<2. Assume ||p<”)\|Lx <Cforn=0,1,...,d. Then
(@) > in~(d
j <CX(1+A A", 9
gy ML, <C (1 + )HZ(:) y 9)

and thus |g;(x)| < C min{l, |x|_d}7 where C depends only on p and A.

Remark 2.3. A related situation as in Example 2.1 was investigated by Villemoes in
[18]. He considered what he calls a good partition—a dyadic partition satisfying (7)
with A = 2. With this restriction, he reduced the set of different modified bell
functions to three.

Given a bell function b; we define an operator P; by

Pr/ (&) =br(&){br(OAE) + b1 (2o — O20; — ©)
— by(2a; — ON 25 — &)} (10)
It can be verified that P; is an orthogonal projection, mapping L,(R) onto

span{w,;: n=0}. Notice that for two adjacent intervals 7,I'e ? with o = o, we

have 1717(5) + 1717(5) = f(¢) ace. for of + el <E<a, — &)

We need to know when P; is a bounded operator in L,(R), 1<p<oco. This is
naturally connected to the same question for the bell functions as Fourier
multipliers. Consider the operator S;, [ € 2, given by

Sif (&) = bi(OA).

Then the Hérmander-Mihlin multiplier theorem implies that ||S;f||, <

[(&—a) d%b,(éﬂ < A for some aeR and 4>0, where C only depends on p (see [2]).
Since

Prf = SH{Sif + e Sif (=) — €S (=)},

we have the following result.

Lemma 2.1. Suppose there exist an «.€R and an absolute constant A>0 such that
|(& —oc) bi(&)|<A. Then ||Pfl,<C A2||f|\L , 1<p< oo, where C, depends only
on p.

Remark 2.4. Notice that [¢ —of|<2|I| for Eesupp(b;). Thus, if we have the
situation as in Example 2.1, then |(¢ — o) d%b](éﬂ < C using (5) and (9).
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3. Brushlet bases in L,

The way we have defined the brushlet bases, they share many properties with
wavelets. In this section, we consider the brushlets as basis functions in L,(R). It
turns out that we need a slightly stronger condition on the bell functions than in
Lemma 2.1. More precisely, we need to impose that the bell functions satisfy
|d% bi(€)|< C(dist(¢,E)) ™", eR, where E is the set of accumulation points. One can
ask if this restriction is possible in our setting. The following example shows that the
condition is satisfied if any pair of adjacent intervals in the partition £ have
comparable length.

Example 3.1. Fix two adjacent numbers n, <#, from the set of accumulation points
E, and let {ox},., be the strictly increasing sequence of numbers such that the
collection {Ie?: I <(n,n,)} is given by {li }cz, Ik = [0k, 0k+1)-

Suppose the length of the intervals decays exponentially as they get closer to #,,
more precisely suppose

1
1</’L<@<A<oo
[Tt

for all k. With this assumption, we have
— — I < I = 1 s keNp.
1, — o ;M \kljgoﬂ T el keNo

Take Eesupp(by,). Then |, — &|<|ny — ox| + [Ie| <%=t |Ik|. Thus, if
e, = (1+A) ||, keNo,

we have from Example 2.1 that

24 —
A—1

d _ 1 _
\—bzk<é>|<c1k| el e ke, ceR,

d¢

with C depending only on p and A.
The same estimates hold true if the length of the intervals decays exponentially as
they get closer to ;. If n,:=sup{|n|: neE}< oo, similar assumptions give

[ b1(E)] < ClE = ol for I (ng, o0).
We can now state the first result on brushlet bases in L,(R).

Proposition 3.1. Let {b;};_, be a collection of bell functions of type (3). Suppose the
set of accumulation points E is finite (or empty) and there exists an absolute constant C

such that |di¢b](£)|<C(dist(f,E))71 (or |d%b1(§)|<C(l+|5|)7l if E=0), for all
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I1e?, EeR. Then for l<p< oo,

12
AL, = <Z |P1f|2> : (11)

le?
€ L

Proof. Fix an neE and let 2, be the subset of 2 such that % bi(€)|<C|E — | for
all /e 2,, £eR. We will first show one of the inequalities in (11) with £, instead of 2

and then use that E is finite.
Define the function m: R—L((5,45), (2 =1{2(2y), by E-{bi(&)ar},,
{a,}le%efz(@q). Clearly, ||m(&) D(try) SSUP; |61l <1. Since
2

Ie?,

d

d_gb’(é)al

contains at most two terms for a fixed £eR, the derivative difm is given by

é—»{dié bl(f)al}leg,”, and we have the bound

Lb()<Cle—n™"

1z m(E)| 9(z,.0) <SUPs e,
Define the operator T, by
T (&) = {b1(EV1(E)} ey, for all fLa(R,75).

Then the vector-valued Héormander—Mihlin multiplier theorem implies [2,14]

1/p

p/2
[ (Z I(Tmf)z(X)|2> vt <Gllfllmsy (12)

© \Ie,

Now define the function 771 : R—Z(C,/3) by {—{b;(¢)a}; »,, a€C. Notice that

<2CE -,
L(Ctr)

1/2
||m<¢>||g<c,/2>=[z |b1<é>|2} <1 and Hdiéna@

le?,

since only two bell functions overlap at a given &. Thus, using the Héormander—
Mihlin theorem once more we have |[Tf1l, v <C'l|f]lL,®r), Where T is the

operator given by

Taf (&) = 01O} ey, for all feLs(R).
Given f € L,(R) n L,(R) we define three functions f'e L,(R,72(2y)),i =1,2,3, by
1= (Tif ), fR(x) = e2f} (—=x), and f7(x) = 24~ f}(—x), [€2,. Notice that

FR(E) = br(20h — Of2ah — &) and f3 (&) = by (22 — O 2e) — ).
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From (12) we have
p/2

[ S 1@l | e ITaslf s <(GE) AL,
— 0

ie7,
i=1,2,3. However,
Prf=(Tulf* +/*—f%),, forle?,,
$0
12
> 1Pt <3G,G//1,,

IeZ),
L,

Finally, since E is a finite set and /; </, we have

2 12 o 1/2
2 12
(ier) | <|(5[iz m
Ie? nek 1eZ?,
L,
L,
1/2
2
<|D_q > 1Pl
nek \ Ie?y
L,

<SHEPGGf,,.

using the Minkowski inequality in the last step.
We now turn to the converse inequality. For felL,(R) we have ||f Hiz =
2_ so by polarization, for ge L,(R)nL,(R) with 1/p+1/p' =1,

[<fig0] =

> / (P11 )(x)(Prg)(v) dx

. 1/2
<1 (Z (Prf)(x )|> (ng > dx
1/2 1/2

< (Z P1f|2> (Z |P,g|2)

Ie? Ie?
€ € L

Taking the supremum of this inequality with the restriction ||g||, , <1 gives
D’

1/2
ol S, < <Z |P1f|2>

le?
€ L

and the result follows. [
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Remark 3.1. The result in Proposition 3.1 is essentially an orthogonal version of the
Littlewood—Paley decomposition with smooth multipliers.

Using Proposition 3.1 we can show even more. By introducing a square function
based on the brushlet coefficients, the L,(R) norm of a function can be calculated
from the size of these coefficients. This property implies that a brushlet basis
constitutes an unconditional basis for L,(R).

Let us recall the definition of an unconditional basis for a Banach space.

Definition 3.1. A system of functions {f,},.n in a separable Banach space X is
called an unconditional basis for X if

(i) X =span{ f,: neN}
(i1) There exists a constant C< oo such that

Z €nCn fn Z Cn Jn

neN neN

<C
X

3

X

for any finite sequence {c,}, .y and ¢, = +1.

Proposition 3.2. Let {wu1};cp ,en, be a brushlet system with associated partition 2
and bell functions satisfying the conditions in Proposition 3.1. Moreover, suppose there
is an absolute constant C>0 such that the set of modified bell functions {g;},. ., given
by (5) satisfies

lgr(x)|<C(1+x*)7", xeR. (13)

Then {Wn1}cp. nen, JOrm an unconditional basis for L,(R), 1 <p<co, and we have
the characterization
1/2
XE(,,_,)> ) (14)

Ly

A1z, = < ST K fownd P

Ie?, neNy
where Ey, = {xeR: [I|x —n(n+3)e(—1,1)}.

Remark 3.2. Notice that sufficient conditions such that (13) holds true are given in
Example 2.1.

Proof. We first notice that E, ;), neNy, are disjoint intervals for a fixed /€2, so
given xeR there is at most one meNy such that xe E,, ;. Using (6), we have

1/2
|I| / XE(,,,J) (X)| <fa W 1 > ‘
= 1"y, ) PLE Wi Y|
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a=s{o3) o
o+ =3) o
< CLUM(Pf)(x) + M (P f)(~x)],

where §(x) = g(—x), # is the Hardy—Littlewood maximal operator, and we used
[15, p. 57] in the last step. By the Fefferman—Stein maximal inequality we have

1/2 1/2
(Z I/%(PIf)|2> <G (Z sz|2> <GS,

le? lez
L[J LF

o0
<2, [ 1P
— 00

.
+ 2 () / PO I
o0

and since .#(§)(—x) = 4 (g)(x) we conclude,

1/2
2
( > |<f,wn.,1>||1|xE(,,,,)) <&/,

1e?, neNy I
P

To get the converse inequality, we consider the linear operator
W Ly(R)—¢2(Ny x 2) defined by

N . 1/2
Wf = {<Sowaid) 125, e, neny-

By a direct calculation using Parsevals relation, we see that for f, ge Ly(R),
0
[ mrwey, ) dy =250,
— 00
Thus, for ge Ly(R)nLy(R), 1 =1/p+1/p',

2[S9 =‘/ ‘ W, Wgy,,(x)dx

< I <HE W Ll I <Va, Wad 1l

< Gl <WEWED Ll Mgl - (15)

Taking the supremum of (15) for {g: \|g||Lp/ <1} yields the desired inequality.

Now we can complete the proof and show that the brushlet system is an
unconditional basis for L,(R). All what remains is to verify that the system has dense
span in L,(R). Suppose ge Ly (R) is such that {g,w,;» =0 for all I,n. It follows
from the characterization of the L, (R)-norm by (14) that g = 0 and using the Hahn—
Banach theorem we conclude that the span of the brushlets is indeed dense in
L,(R). O

From Propositions 3.1 and 3.2, we notice a clear similarity with wavelet
expansions. The main difference is that the brushlets allow a more flexible
decomposition of the Fourier domain. Notice also that the above results easily
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extend to LP(R“')7 d>1, by constructing separable brushlet bases. We leave the easy
proof, based on Fubini’s theorem, to the reader.

Corollary 3.1. Let {W}};cp, neny» 1= 1,...,d, be a set of brushlet systems each
satisfying the conditions in Proposition 3.2. Fix d>1 and define w,go(x) =
wh (X1 ® - ®wffd"1d(xd), Q=1 x - x1g, n=(ny,...,na). Then {wy o}, o form
an unconditional basis for L,(R?), 1<p< co.

3.1. Nonlinear approximation with brushlets

In this section, we will consider the question of approximating a function in L,(R)
by a finite brushlet expansion. For this purpose, we need some basic terminology
from approximation theory.

Let ¥ == {, },cn be a normalized basis of a Banach space X. Given a function
f€X with associated expansion coefficients {ci}, ., We consider approximating f
using N elements from W. The task is to minimize the difference between f and the
approximation in X. Denote the lower bound by oy (f,¥, X), i.c.,

f=> dy,

Y. X) =inf
an(f,'¥, X) inf A
jel

where infimum is taken over all coefficients d; and sets of indices I'cN with
cardinality #I" = N. Depending on the behavior of this bound for different values of
N, the functions in X are divided into different approximation spaces. We define the
approximation spaces .o/, (¥, X), 0<g< o0, s>0, as all fe X with

o 1/q
o, 1
A s oo x) = (Z (k Uk—l(fa‘P>X))qk> <,

k=1

where ao(f,¥,X) =||f||y. Assume there exist a subspace ¥ < X and constants
C, C'>0 such that the following Jackson and Bernstein inequalities hold for some
r>0:

(Jackson) on(f, ¥, X)<C||f||lyN~", forall feY

and
(Bernstein) Z gl| <C Z ;|| N, for all TeN
jel Y jell X
with #I" = N.
Then it is well known, that the approximation spaces

&/‘;(‘P,X ), 0<s<r, 0<g<oo, are given by the interpolation spaces (see [6,
Chapter 7)),

AW, X) = (X,Y) (17)

s/rq-



36 L. Borup, M. Nielsen | Journal of Approximation Theory 123 (2003) 25-51

In Section 4, we will derive Jackson and Bernstein inequalities for brushlet
approximation in case X = L,(R) and Y = B} (L,(R)) for some values of 5, p and g.
For certain bases the limit in (16) can be reached (up to an absolute constant
independent of f and N) simply by picking the N largest coefficients in the
expansion. If a basis satisfies this property it is called a greedy basis. More precisely,
define for each '€ X with expansion coefficients {¢;} and N eN, the function

jeN>
Gn(f) = Z Gy,

jeA

where A =N is a set of cardinality N such that |¢j| >|ck| for all je 4 and k¢ A (if A4 is
not unique take any such set).

Definition 3.2. A basis W is called greedy if there exists a constant C independent of f
and N such that ||/ — Gn(f)||<Con(f, ¥, X) for all feX.

The reader can consult [10] for more details on greedy bases. From a practical
point of view, greedy bases are very desirable since thresholding is a much simpler
operation than trying to minimize (16) directly. Since it is difficult to verify if a basis
satisfies Definition 3.2, we can use another characterization of greedy bases given by
Konyagin and Temlyakov in [10]. We need to define a democratic basis.

Definition 3.3. {i; },.. is called democratic if there exists a constant C>0 such that

> R

keP keQ

<C
X

7

X

for any two finite sets of indices P and Q with the same cardinality, #P = #0Q.

Konyagin and Temlyakov proved that a basis is greedy if and only if it is
democratic and unconditional [10, Theorem 1]. From Proposition 3.2, we know that
certain brushlet bases are unconditional bases in L,(R), 1 <p< co. We want to show
that they are democratic too. This is equivalent to proving the Temlyakov-type
inequalities given in Lemmas 3.1 and 3.3 below. First, we need to define a special
class of partitions of R.

Definition 3.4. Assume the set of accumulation points £ is finite, E = {nj}le, and let

2 be a partition of R\E. Fix a /> 1. Assume there exists an associated set E' =

7 . . .
{n/' Yz, with gy = —o0, 1,/ = oo, and n;_y' <m;<n/,j=1,2, ..., J, such that A<%7
for all adjacent I,I'e#? with either n;_,'<oj :oc[,,<nj or n;<op, =oc§<n/7 j=
1,2,...,J. Then we call 2 an exponential partition of R of order /.

When E = (), 2 is called an exponential partition of R of order / if ).g%, for all

I,I' e 2 with either o, = ah, <0 or o, = o >0.
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We will show that brushlet bases associated with exponential partitions are greedy
bases.

Lemma 3.1. Let {wur}icp e, De a brushlet system satisfying the conditions in
Proposition 3.2, where 2 is an exponential partition of order A>1. Consider f =
Z(n,I)EQ CagWni, QcNox 2P, #0=N. Let 1<p<oo. Assume ||c,,,,w,1,1||Lp<17
(n,I)e Q. Then

1£1l,, <CN',

with C depending only on p and .
In order to prove this lemma, we need the following observation.

Lemma 3.2. Let O<a,<ap< -~ <ag be a set of numbers satisfying 1 <}t<aﬁl—f' and let
7
E;cR,j=1,2,...,5s be measurable sets. Then

S q S
/ [ > a_}/"xE,(X)] dx<C ) 4B,
- | j=1 =T

o0
o0
where C depends only on q and .

The proof is basically given in [17], but will be shown here for completeness.

Proof. Write F(x) =37, a;/ "}(E/, (x), and define sets

E; ::E/\ U E.
k=(+1

Then for xeE; we have F(x)< Y. al!. Define B = al?

;' ;'%, and notice 4=

V4 <%. Since [3/>/V’jﬁ/ we have
] g
/ e j
ZﬁjSﬁf S
= par A—1

Thus, F(x)<Ca,/? for xe E; . Notice that U= E=U,_, E,. Hence,

[

q s s
dx<C Y a|E/|<C Y alEl. O
/=1 J=1

We can now prove Lemma 3.1.
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Proof. From Proposition 3.2, we have
1/2

2
Z |Cn,1| |I|XE(”.1) ’

(n1)eQ

171

It

L,
LI’
where E, ) = (n(n+1/2) — DI|7", (n(n+1/2) + 1)|1]"). Notice that

llewswnillz, = lentl1|' 21 Enl? = 2" |cusll2] 277,

ie., [eas| < C,/|I|VP7 "2, Thus,
12
1 2/p 1" 1/p,
L, < CP Z |I‘ XEq S CP Z |I| LEq.
(nI)eQ . (n1)eQ L

74

1]

Given nekE let ' e E' be the associated point from Definition 3.4 with n<#’. Let
0, < Q be the collection of indices (n,1) with I<(n,n"). We will show that

S g, || <CN'P,
(”71>EQ’7 Lp

and since the set E is finite, this suffices to prove the lemma. Recall that
EunOEwn = 0 for n#n'. Introduce the sets

E = U E(nﬁl)v
n

where the union is taken over all n such that (n,I)e Q,. Since |E(, )| = 217", we
have 2N = >, |I||E/|- Hence, using Lemma 3.2,

1 1
Z 1] /pXEW) < Z 117,
(n.1)€ 0y L, 1 Ly

1/p
> MIE]

<C2UPNP,
7

<C

where C depends only on p and 2. [

Remark 3.3. Notice that for a finite collection P, #P = J,

S, || < D0 (HIEwnD P <2,

(nd)eP L (n)eP

so we could relax the conditions in Lemma 3.1 a bit by assuming £ is an exponential
partition of order A>1 for all but a finite number of intervals.
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From Lemma 3.1, we derive an inverse estimate by duality (a proof can be found
in [17]).

Lemma 3.3. Let {wur}icp e, De a brushlet system satisfying the conditions in
Proposition 3.2, where 2 is an exponential partition of order A>1. Consider f =
e CniWni, #Q = N. Let 1<p<oo. Assume |[cyswni||,, =1, (n,1)€ Q. Then

£, = CN',
with C depending only on p and 1.

Now combining Proposition 3.2, Lemmas 3.1 and 3.3, we have the following
result.

Proposition 3.3. Given l<p<oo. Let # be an exponential partition and let

W2t ep. nen, be an associated brushlet system normalized in L,(R). Suppose there

exist two constants C,C'< oo such that, for all 1€ P, the bell functions satisfy

Lby(8)| < C(dist(E,E)) ™" (or |[$&bs(E)|<C(1+ &))" if E = 0) and the modified bell
-1

functions satisfy |g;(x)|<C'(1 4 x*)"". Then the brushlet system is a greedy basis in
L,(R).

The following result based on Lemma 3.1 will be used to show a Jackson
inequality for N-term brushlet approximation (see Proposition 4.3).

Proposition 3.4. Let {w, 1}, ,cn, be a brushlet system satisfying the conditions in
Lemma 3.1. Let s>0 and 1/t = s+ 1/p. Then for f € L,(R) with associated brushlet
coefficients {c,} we have

on(/f, {Wnljl}ﬂ L)< C||{C,£1}H(ZN_Sa
with C depending only on p, A and s.

A proof entirely based on the inequality in Lemma 3.1 can be found in [4]. We
leave the calculations to the reader.

4. Brushlet bases in B;(L,(R))

In this section, we consider brushlets in the Besov spaces. We will show that some
brushlet systems constitute unconditional bases for the inhomogeneous Besov spaces
B,(Ly(R)), 1<p,g<o0, s>0. The main assumption we need in order to
characterize a Besov space by brushlet coefficients is that the length of the intervals
in the partition £ essentially grows exponentially as their location gets further away
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from zero. Thus, we need to assume that the set of accumulation points is finite,
1o = max{|y|]: neE} < o0.

Given a real positive number o, we define
2, ={Ie?: In(—a,a) = 0}.

Proposition 4.1. Let {wu1};.p. ,cn, be a brushlet system with associated partition 2.
Suppose the set of accumulation points E is finite (or empty) and that P is an
exponential partition of R of order 2> 1. Furthermore, suppose there exists an absolute
constant C such that the associated bell functions {br}, . , satisfy |( — oab) L br(&)|< C,

dE
EeR. Then for 1<p,g< oo, s>0,

1/q
[FaP (Z <|1|“'|P1f||Lp>q> . (18)

le?

Given a partition of unity {‘f;k}keNO satisfying supp(¢do) =[—2,2], ¢i (&) = ¢ (&),
supp(¢y) S [—2k+1, —2k-1 U [2k-1 2k41] for k>0 and [E¢y/(¢)|<C, we will prove
that the RHS of (18) is equivalent to

1/q
1Ny, = <Z <2’“||¢k*f||L,7>f'> .

kENO
Recall that the Besov space B;(LP(R)), seR, 1<p,g< oo, is defined as the set of
fed" with || f|| g1,y < . In order to prove the equivalence we need the following
q\"=Pr

technical lemma.

Lemma 4.1. Let {ox}; N, be a strictly increasing sequence of real non-negative
numbers satisfying limy_, ,, o = 0. Define a partition {I}; N, of [0, 0) by Ix =
[0k, oy 1) and let {by}y N, be associated window functions. Assume < |lewr|/ || <A
for all keNy and define

Ay ={K'€Z: supp(¢w)supp(by)#0}
and
B, ={KeZ: supp(bk/)msupp(qgk);é@}

for k>0. Then # A, <d4 < oo and # By, <dp < oo independent of k. Furthermore, there
exist constants 0<c4, cg, C4, Cg< 0 such that ¢,2F < | 2| < C42% for all k'€ Ay and
|l | <2F < Cp|Iy| for all k' € By, independent of k.

Proof. We claim that
(4 = 1) (o — og) 4 [Lo| < [ Ix| < (A = 1) (ot — 20) + |Lo], (19)
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which will be proved by induction. Clearly, (19) holds for £ = 0. Assume that it holds
for 0<n<k — 1. Then since ox = 04— + |Ix—1|, we have that

(4= D)o — ot = [Tx—1]) + [o| < [Te—1 | < (A = 1) (ot — 00 — [Lx—1]) + [ o]
or equivalently that

((2 = Do — 20) + [lo]) /A< Hia | S (A = D)o — 20) + [lo]) /A

This inequality together with the restriction that A<|i|/|lx—1|<A gives the
inequality for k.
We can now prove that #A4; <d,. Using (19) for a fixed k>0, we have

I, = [ock,ock + || s [ock,otk + (A= 1) (o —ag) + |Io‘)§ [ock, or(A+1)).
Let k/, i=0,1 be the smallest respectively largest positive integer such that
2k > 5 and 281 <oy (A + 1) (ie., supp(du ) NI #0 imply ko' <k'<ki’). Then
A+1
(= k' = 2)<logs (%5 5D) —logy(1-4.4)
k

for k>0, and since supp(by) =Ij_1 I Ul}y1, we have
#Ar<3log,(1 +A) +6.

||
> Iol+o

Notice also that (19) implies ¢joy < |Ii| < c01, where ¢; = min{A — 1 tand ¢; =

Ally| : ko'—1 k' +1
max{A — 1’W}’ and since 27 ~' <oy <291 we have

g , /
C12 dy 12/( <|Ik|<c22d,4+12k

for all k' e 4y.

For B; we use the following arguments. Fix a k>0 and let &/, i = 0,1 be the
smallest respectively largest positive integer such that I, 271, 2551 5£0 ie., oy +
|ty | =251 and oy, <2M1. Notice that k' — ko' is maximal if |ly,| = A|Ix| for
ko' <k’ <k’ in which case

k' —ko'—1
ey =y + Y A | = ey + [T (AT = (= 1)
/=0
Thus,
2k+1 - Oy B Olkey! + |Ik0,|(ik1’_k0/ - 1)(1 _ 1)7]
2k /‘xko’ + lIk0’| Oty + |Iko"
which gives
)Lkllfk()’ <3 u‘ - l)ako' + 4) — 3.
|Iko’|
Using (19), and that || = || we get
e A= 1oy — |1 A—1
;Lkl —ko <3M+41<3M+41 -3,

k| o]
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and thus

(ki — k') log A <log (ﬁ

+ 4) + log /.
ITo] £

Finally, since supp(bx) = lir—1 U Ii» U 41, we have the estimate

log(fl—ﬁ +4)

B <
#Bi log 4

Notice that ope[2F71 251) implies ¢ 287! < |lv| <22, where ¢; = min{/ —

“hl 3 and ¢ = max{A — 1,281} Clearly, o e[257!,2571) if and only if ko' +

o[ +ao > [Io |+

1<K <k and ko' — 1<k'<k\ + 1 if kK’ e B;. Thus,

Cl g s
P 2kl < |Ik/| <62A2k+1
for all ke B,. O
With these results at hand we can now prove Proposition 4.1.

Proof of Proposition 4.1. We first notice that

Yo UFNPA < D (TGS,

T1eP\2y, Te?\2y,

=cylae | S ) <clir,

Ie2\2,

by Lemma 2.1 and since £ is an exponential partition. Define
Ap = {keZ: supp(¢i) nsupp(bs)#0}

and
By = {Ie2,: supp(b;) nsupp(ei) #0}.

Then there exists d4 < o0 and dg< oo such that #A4;<d, and #B;<dp by Lemma
4.1. Notice that {‘f)k}keNo is a partition of unity so » 3, , dr = 1 on supp(b;) and we
can substitute f'in (10) by D ked, $if. Thus, Lemma 2.1 implies

1P 11l = P1<Z b *f)
kEA] Lp
<G| ¢ f|| <G Y ey,
kGA[ Lp kGA]
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From Lemma 4.1, we have that |I|<2* for any ke A4;, where the equivalence only
depends on 4, A and #,. Thus,

q
Y LIPSl '<C Y ( > Ml *f”L,))

IEQ”O Ieﬂ,m keA;
q
k.
oy ( e *fan) |
1632,70 ked;

Holders inequality with 1 = 1/¢ + 1/4" implies

> (z 4, *fan)q

lTe2y, \ked;

q/q
<> (Z(u,(k))q’)

IG;Q,IO k EN()

<d{™ ST ST L, (@5l £l

1632,,0 kEN()

!

<Z (L, (52| *f|Lp)‘f’>

kEN()

=dy) ST k) ) @5l 11"

keNy \ e 32,,0

Finally, since there is at most a dp fold overlap between the A4,’s, this gives

STPIPANL) < CdfV ST ST L (k) ) 25 xS,

le2y, keNo \Te2y,
< Cdidy 3 25l 111, )
keNo

The other inequality is proved in the same fashion. Since ), p P/I? —f on

supp (o),

e 111, = ‘

(57

IGBk

<c S el

Lp IEBk

by the Hérmander—Mihlin theorem. We leave the details to the reader. [

We can now calculate the Besov norm of a function f from knowledge about its
projections P; f. In fact more can be said.

Proposition 4.2. Given a brushlet system {wur}cp ,en, @S in Proposition 4.1.
Suppose, in addition, the modified bell functions {g;},. ., satisfy ||g||; < C< 00. Then
{Wnttrer nen, forms an unconditional basis for B;(L,(R)), 1<p,q<co, s>0, and
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we have the characterization

11 qa/p
||f||B{I(LF(R))X Z(Z (|I|H2 PI<f, Wn.1>|)p>

Ie? \neNy

1/q

Proof. Using Proposition 4.1, it suffices to prove that

11 1/p
||P1f|L,,X|1|2_”<Z |<f,wn,1>|”> : (20)

neNy

The fact that ||g;||;: < C together with representation (6) imply that

1 1
sup Z War(x)|<CH2 and  sup [|wull, <C|72.
neNy

xeR neNy

With these two properties, (20) is a well-known result (see e.g. [13, pp. 30-31]). O

Remark 4.1. Notice that similar arguments as in the proofs of Propositions 4.1 and
3.2 yield a brushlet characterization of the Triebel-Lizorkin spaces F,(L,(R)),

l<p,g< o0, s=0, given by

1/q
1
S gz, vy = < Z (|<f7Wn,1>||1|s+2)qXE<,,<,)>

No, IeZ?
nelNg, 1€ Lp

From the characterization of the Besov spaces as given in Proposition 4.2 it is now
possible to describe the approximation spaces &/;({wn‘fl}, L,),1<p<o,0<g< o0,
y>0, by examining the Besov norm of N-term approximations of functions in L,(R).
As noticed in Section 3, the task is to derive certain Jackson and Bernstein
inequalities.

Using Proposition 3.4 we can derive the following Jackson inequality.

Proposition 4.3. Given 1 <p<oo. Let {w,;};c . ncn, be a brushlet system normalized
in L,(R) and with associated exponential partition of order .>1. Suppose there exist
two constants C,C'< oo such that, for all 1e?P, the bell functions satisfy

|d15b1(f)| < C(dist(¢, E)) ™" (or |di§b1(§)‘ <C(1+1E))7" if E = 0) and the modified bell

functions satisfy |g;(x)| < C'(1 +x2)"". Given s>0 such that © = (s + 1/p)~"
l<t<oo. Then for f e B{(L.(R)),

O-N(fa {Wiil}ﬂ LP) < C||f||B~§(LI(R))N737

with C depending only on p, A and s.

satisfies
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Proof. Let {c;} be the brushlet coefficients such that f = = ¢, ;w/; for fe L,(R).
From Proposition 3.2, we have that
11 w11
=P P S wary = (17275 f s >
Thus, Proposition 4.2 implies
/] B (L.(R)) = {e,

and the estimate follows from Proposition 3.4. [

Likewise, we can derive a Bernstein inequality for N-term brushlet approximation.

Proposition 4.4. Let 1 <p< oo, and let the assumptions of Proposition 4.3 be valid. If
=2 neo CurWnir with #Q<N, we have

1/ 1By ry) S EN*II f i,

The proof is similar to that of wavelet expansions (see [4,5]).

Proof. Define
1 1
2 ? 20712/ ?
— IS S o> Pz, b =3 S el PP e, b
In In

and notice that |cn”,||1\l/pr(,,7,> < CS(f). Hence, using Proposition 3.2 we have

W llag s € [ 3 ledil ez, () dx

© In

. x 171
= [ S I T, ()

—© In

< [T S s, () s
<ClIsts |L{ 3 e, () }

—0 In

<c”|f|L,,{Z |1||E<n71>} <2C||fI N7 O
In

As an immediate consequence of the Jackson and Bernstein inequalities in
Propositions 4.3 and 4.4 and relation (17) we have the identity

A (Wi}, Lp) = (Lp(R), By(Le(R))), o
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where 1 <p,1< o0, 0<g< o, 1/t=541/p, and 0<y<s. When 1/g =1y + 1/p the
RHS equals the Besov space B (Ly(R)), see [4].

5. Polar brushlets

The easy extension of the univariate brushlet bases to bases of function spaces in
RY, d>1, is to use functions given as tensor products of brushlets in phase space, see
Corollary 3.1. This was the original construction of multivariate brushlets by Meyer
and Coifman in [12]. But one could also consider other types of extensions. Instead
of using a partition 2 of the whole line we could consider a partition 2" of R*. This
immediately leads to an orthonormal basis {¥, ;};c . for Ly(R™), with v,
given by (4) and thus a basis {w;};c ,en, for the Hardy space A*(R). If we
combine this basis with an orthonormal basis for L,(T), T = [0,2n), we are able to
construct a basis for L,(R?) that consists of tensor products in polar coordinates.

neNy

Definition 5.1. Let {®,},2, be an orthonormal basis for L,(T). Then we define the
functions v, ; ,, I€#", n,/ €Ny, by

l/;n,l,/(é) = i

\/;WZI(")®/(9), & =re".

The reader will notice that the construction bears some resemblance to the
Ridgelet construction by Donoho [7] but the construction above allows a more
dynamic decomposition of the spatial domain/phase plane.

Proposition 5.1. The system {Y,;,}icp+ nsen, JOrms an orthonormal basis for
Ly(R?).

Proof. Recall that
Ly(R?) = Ly(R",rdr) ® Ly(T).

so we just have to verify that {r~!/?

W, (N} 1ep new, i an orthonormal basis for
Ly(R™,rdr). The collection {r~"2;;(r)};c»p+ nen, 15 @ well-defined orthonormal
system in L,(R™, rdr) which follows easily from the fact that

0 0
/0 r’l/zvﬁ,t,(r)rfl/zwiﬁ’,,(r) rdr= /0 Wi (MWl i (r) dr = S, w0

We only need to verify that {r="/2},}, .y, is dense in Ly(R*, r dr). Recall that
the compactly supported continuous functions C.(R™) with support away from the
origin are dense in Ly(R", rdr). Let f € C;(R") and suppose that { f,r /%57, > =0,
for all e 2", neNy. But this is equivalent for saying that the Fourier coefficients of
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r'/2f(r)e Ly(R*, dr) w.r.t. the system {3} };_ 5 ,cn, are all zero. Hence, r'/2f(r) =
0 which implies that f = 0 and the result follows. [

The way one would often use the system {,, ; ,}c 5+, sen, 18 to apply the Fourier

transform to the function f and use Plancherel’s Theorem: { f, 4, ,;,> = < f, lﬁm 170
to calculate the expansion coefficients. However, if one prefers to work in the spatial
domain it is actually possible to find an explicit formula for v, ; , using the theory of
spherical harmonics. We have the following representation. '

Proposition 5.2. Suppose that each ®, has an expansion

0) — Z ﬁ/,xeisﬁ,

SeZL

with {B;s},€1(Z). Then
l//n,l,/(x) = Z ﬁ/JELI’S(R)e"SW’ X = Reim’

SeZ

where
o0
Fnﬁlﬁ_y(R) = l?/ W’J{I(V)JS(RV) rl/Z dr,
0 :

and

1 2n o i
Js(t) _ E/O ezlsmf)e 50 do
is the Bessel function of the first kind of order s.

Proof. By definition,
r 1
l//nsls/(é) = —F Vf/+ B/ W 1 lV(g’
PR 0= 5
) €. By the

i (
theory of spherical harmonics in R? the inverse Fourier transform of IZ ,(r,0) is given
by [16, p. 137]

hs(x) — Fy(R)ei.\w’ X = Reiw,

is an absolutely convergent sum of terms of the type h, o(r,0) =

with
o0
Fy(R) =1/ / Wt (R (Rr) 1/ dr.
o :
The result then follows from the linearity of the Fourier transform. [J

In fact more can be said. Consider the integral

P iplcos(0—w)—1]
_ ip|cos(t—w)—
) ’/2n/0 O(0)e do,
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for weT and peR*. Notice that

x//m,/(x rI(rR, w)ei’R dr, x = Re™.

1 © o
=— W
ey L
From the theory of oscillatory integrals [15, pp. 334-337] we have
I(p,0) = e ™*O(w) + O(p?), p—> o0,

if ® is supported in a neighborhood of w. Thus, since
o0
/ bi(r)(Rr) ™ dr <2RTP (o — )™ = (o + )77,
0
we get the approximate representation

1 . )
Yrs(X) = ﬁe””/“WZI(R)G)/(w) +O(R?), x=Re”,

for large o).
Recall that for certain partitions, w

iW' If ®, is well localized around wy, ¥, ; , essentially consists of two peaks at

+

+1(R) consists of two peaks localized at

1 1
n(Tflj) e and H(TI?) @) (see Fig. 1).

Considering the very good localization of the basis {y,;,} in the phase plane it is
natural to expect that such functions form an unconditional basis for the Sobolev
spaces and that we have a characterization of Sobolev functions of the same type as
for wavelets. That this is indeed the case will be the content of the following

proposition, which will also conclude the paper.

Proposition 5.3. Let {y, ; ,} be a basis for which there exists a constant >0 such that
o o <A for 1€ P*. Then for s>0 we have

||f||i]\(R2>x Z |<f’ l//n,l,/>|2(1 + (OC?)ZS),

IE;”}JF, n,/eNo

Proof. We have
1 By = [ VOR(+ 1) de,
so it clearly suffices to verify that

[ 0P ae= S K > P 1)

Ie?t, n/eNy
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// '%\

Fig. 1. Example of a function v, , (left) and its frequency content (right). In this example, O, is a local

cosine function.

Put g(r) = o7 [f(r, 0)* d0. Then

0 2n 0
/0 /0 [f(r,0)|2rz”ld6dr—/ g(ryr®*tdr
/ 2A‘+ldr
Iep™

< Z (oc,)zs/lg(r)rdr.

Ier™t
Given Ie 2", we denote by I, I"e 2" its two adjacent intervals. Notice that on the
annulus {(r 0): rel}, fir,0) is given by the orthonormal expansion

= > > LSl DY (r,0)

n/eNog Je{l.I' 1"}
yielding
© 2 5 o 5
Jaowars [~ [ worradao= 3> S <l
1 0 0 n/eNy Je{lI'I"}
Thus,

ONCIRN RTCITED SCIRED SR DRI 0,

[er* nleNy Je{lI,1"}

RS VD DN C/ O A PO

I1e?", nteNy

For the converse inequality we have for ITe 27,

Z |<fal//n,l,/>|2 / rdr
Je{I,I' 1"}

n,/ €Ny
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which implies that

Z (all)zs|<fal7bn.1,/>|2

I1e2?", nleN,

<§j«%ﬁ+wbh+wm%[ﬁ@wm

le?*

<24 1%) Z (ocll)zs/lg(r)rdr

Iez*

<24 2%) Z /g(r)r“zs dr
I

lez*

= @+ [ oPra O

We can now use a standard argument from the theory of real interpolation to
extend the result to L,-based Besov spaces Bf{(Lz(RZ)). We have

Corollary 5.1. Let {1/} rcp+ nsen, be a basis for which there exists a constant 7.>0
such that oy o <2 for Ie€ P*. Then for s>0 and 0<q< co we have

||f||BfI(L2(R2))x Z I<f, %,1,/>|2

Ie?", nteNy

q/2\ /4

+ Z (aé)sq Z ‘ <f7 l//n,l,/ > |2

IeP" n,/ €N
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